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Abstract
We investigate how to reliably decode the input information from the output of a
spiking neuronal network. A maximum likelihood estimator of the input signal,
together with its Fisher information, is rigorously calculated. The advantage of
the maximum likelihood estimation over the ‘brute-force rate coding’ estimate
is clearly demonstrated. It is pointed out that the ergodic assumption in
neuroscience, i.e. a temporal average is equivalent to an ensemble average,
is in general not true. Averaging over an ensemble of neurons usually gives a
biased estimate of the input information. A method on how to compensate for
the bias is proposed. Reconstruction of dynamical input signals with a group
of spiking neurons is extensively studied and our results show that less than a
spike is sufficient to accurately decode dynamical inputs.

PACS numbers: 89.70.+c, 87.19.La

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a spiking neuronal network, how to reliably decode its input information in terms of observed
neuronal output activity? This is a long-standing and fundamental issue in (computational)
neuroscience [11, 5]. Even in the simplest form of neuronal models, the integrate-and-fire
model, the answer is not known [16]. The difficulty lies in the fact that we do not know the
exact input and output relationship in any ‘realistic’ neuron (model) and hence a parametric
estimate approach is hard to be implemented in practice. In the current paper, we tackle the
issue in a network of integrate-and-fire models. We expect that our approach will open a
pathway into the study of how the biological nervous system works.

To implement a decoding scheme for a spiking network, we first need the exact relationship
between the input and the output of the integrate-and-fire model. To this end, we begin by
considering spiking models with exactly balanced inputs. By exactly balanced input we mean
that the mean input equals the threshold. In fact, such a model has been extensively studied
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in the literature, see for example [19]. The output interspike interval distribution is then
rigorously calculated. With the help of such a distribution, the maximum likelihood estimator
is explicitly constructed. Surprisingly, the obtained maximum likelihood estimate of the input
rate is quite simple and we can further manage to calculate the related Fisher information
as well. With a static (constant) input, the accuracy of the maximum likelihood estimate is
explored and we assert that the input information can be reliably decoded. In [2], the author
has carried out a similar approach with experimental data. Unfortunately, in [2] an exact
distribution density of the interspike intervals is not available.

We then go a step further to decode dynamical input signals. Here, we find that the often
made assumption of ergodicity (averaging over a lone time window of a single neuron activity
is equivalent to averaging over a large group of neurons’ activity), does not hold true. The
ensemble average usually overestimates the input. A method to adjust for the overestimate is
then proposed. We examine how long a time window of a population of neurons is needed
to carry out a reliable decoding. The issue is related to the currently hotly debated ‘coding
problem’: whether the nervous system employs a ‘time coding’ strategy or a ‘rate coding’
strategy. The usual argument against the ‘rate coding’ strategy is with respect to its information
processing speed; it is too slow to reconstruct the input information from the rate function
(see for example [14]). In the population coding framework as we developed below, a neuron
only needs a single spike to read out the input information. How many spikes are actually
needed to decode the input information in the ‘rate coding’ framework? We show that in
a population of spiking neurons (100 neurons are used in our simulations), we can reliably
decode a dynamical input signal even with less than a single spike per neuron. Our results
clearly demonstrate that if time is the critical requirement of information processing in the
nervous system, the ‘rate coding’ is faster than the ‘time coding’.

We emphasize here that due to technical difficulties (see section 3), we are only able to
work out our results under the assumption of exactly balanced inputs. Although we believe that
all our main results below are qualitatively true for general cases, i.e., without the assumption
of exactly balanced inputs, it remains an interesting question to exactly find the maximum
likelihood estimate of the input. A movie showing our results with dynamical input signals
can be downloaded at http://www.cogs.susx.ac.uk/users/jianfeng.

2. Models

The model neuron we use here is the classical integrate-and-fire model [15]. When the
membrane potential V (t) is below the threshold Vthre, its evolution is determined by

dV (t) = −
[
V (t) − Vrest

γ

]
dt + dIsyn(t) t > 0 (1)

with V (0) = Vrest < Vthre and where γ is the decay time constant. The synaptic input current
is

Isyn(t) = a

p∑
i=1

Ei(t) − b

q∑
j=1

Ij (t)

with Ei = {Ei(t), t � 0}, Ij = {Ij (t), t � 0} as nonhomogeneous Poisson processes with
rates λE,i(t) and λI,j (t), respectively [13], a > 0, b > 0 being the magnitudes of each EPSP
and IPSP and p and q are the total number of active excitatory and inhibitory synapses. Once
V (t) crosses Vthre from below a spike is generated and V is reset to Vrest, the resting potential.
This model is termed the leaky integrate and fire model. The interspike interval of efferent
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spikes is the random variable

T = inf{t : V (t) � Vthre|V (0) = Vrest}.
We use pλ(t) to denote the distribution density of T. More precisely we should define

τi = inf{t > τi−1 : V (t) � Vthre|V (τi−1) = Vrest} i � 1

τ0 = 0
(2)

and Ti = τi − τi−1 for i � 1. It is readily seen that {Ti, i � 1} is an i.i.d. sequence and has a
common distribution density as T.

In the following, we further assume that Vrest = 0, a = b, p = q and use diffusion
approximations to approximate synaptic inputs [15]. However, the assumption of equal
strengths for the excitatory and inhibitory synaptic drives may be easily relaxed. Thus, we put

dIsyn(t) = µ(t) dt + σ(t) dB(t)

where B = {B(t), t � 0} is the standard (mean zero, variance t at time t) Brownian motion,
and {

σ 2(t) = a2λ(t)(1 + r)

µ(t) = aλ(t)(1 − r)
(3)

with λ(t) = ∑
λE,i(t) and rλ(t) = ∑

λI,i(t), r being the ratio between the inhibitory input
and excitatory input. In general r could be a function of the input λ, i.e. r(t) = r(λ(t)).

In the current paper, we focus on the case of exactly balanced inputs, which means
µ(t)γ = Vthre, i.e.

r(t) = 1 − Vthre

aλ(t)γ
. (4)

Biologically this condition says: inhibitory inputs act as a feedback to maintain the balanced
inputs. The relationship between r and λ roughly describes the well-known ‘push–pull’ effect
of the inhibitory input: the stronger the input (larger λ), the stronger the inhibitory input
(larger r). Hence,

σ 2(t) = 2a2λ(t) − aVthre

γ
. (5)

We fix a few parameters in the simulations: γ = 20 ms, a = 0.5 mV and Vthre =
20 mV, these values being appropriate for some pyramidal neurons in the mammalian
neocortex. We consider input rates within the regions of 2–10 kHz, which is roughly equivalent
to 300 neurons firing with a rate between 6 and 30 Hz.

3. Maximum likelihood estimate

We first consider static inputs. Equation (3) in the previous section is now reduced to{
σ 2 = a2λ(1 + r)

µ = aλ(1 − r)
(6)

with

r = 1 − Vthre

aλγ

and hence

σ 2 = 2a2λ − aVthre

γ
.

We have the following lemma on the probability distribution of pλ(t).
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Figure 1. Left: histogram versus time and pλ194/0.027 (solid, smooth line) versus time.
Histogram is obtained with a = 0.5, λ = 10 kHz, γ = 20 ms and r = 0.8. Two thousand
ISIs are generated to produce the histogram. Right: pλ(t) versus t with λ = 2, 4, 6, 8 and 10 kHz.

Lemma 1. When Vthre = γµ, i.e. the exactly balanced input case, we have

pλ(t) = 2σ 2Vthre exp(−t/γ )√
π [σ 2γ (1 − exp(−2t/γ ))]3

exp

{
− (Vthre)

2 exp(−2t/γ )

σ 2γ (1 − exp(−2t/γ ))

}
. (7)

Proof. From equation (9.222) in [15], we see that the Laplace transformation of pλ(t) is given
by

pL,λ(s) =
exp

[(
γµ

σ
√

2

)2]
D−s

(
γµ

σ/
√

2

)
exp

[(
γµ− Vthre

σ
√

2

)2]
D−s

(
γµ − Vthre

σ/
√

2

) (8)

where

D−s(x) = exp(−x2/4)

2s/2
√

π

[
cos

(πs

2

)
�

(
1

2
− s

2

)
�

(
s

2
,

1

2
; x2

2

)

− 21/2 sin
(πs

2

)
�

(
1 − s

2

)
x�

(
s

2
+

1

2
,

3

2
; x2

2

)]
and � is the confluent hypergeometric function of the first kind, i.e.

�(ξ, η; z) = 1 +
ξz

η
+

ξ(ξ + 1)

η(η + 1)

z2

2!
+ · · · +

�(ξ + n)

�(η + n)

�(η)

�(ξ)

zn

n!
+ · · · .

Up to now, it seems the inverse Laplace of equation (8) remains open and it is hard to obtain
a close form of pλ [7, 15]. However, under the assumption γµ = Vthre, equation (8) becomes

pL,λ(s) =
exp

[(
γµ

σ
√

2

)2]
D−s

(
γµ

σ/
√

2

)
1

2s/2
√

π
cos

(
πs
2

)
�

(
1
2 − s

2

) . (9)

From equation (9), we can perform the inverse Laplace transformation, and the conclusion
of the current lemma thus follows. �

In figure 1, the distribution density pλ of equation (7) and numerically simulated
distribution density are plotted. It is easily seen that the distribution density moves to the
left (figure 1, right) when the input becomes stronger.
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Figure 2. fa(t) versus time t. It is interesting to see that shorter intervals play a much important
role in the estimation of λ̂N .

Now we turn our attention to the maximum likelihood estimate of the input. Let us denote

f1(t) = 2Vthre exp(−t/γ )√
π [γ (1 − exp(−2t/γ ))]3

and

f2(t) = (Vthre)
2 exp(−2t/γ )

γ (1 − exp(−2t/γ ))
.

We then have

pλ(t) = f1(t)

σ
exp

(
−f2(t)

σ 2

)
.

Therefore, the likelihood function is given by

L =
∏N

i=1 f1(ti)

σN
exp

(
−

∑N
i=1 f2(ti)

σ 2

)

where N is the total number of spikes. It is easily seen that the maximum likelihood estimate
of σ is

σ̂ 2
N = 2

∑N
i=1 f2(ti)

N
=

N∑
i=1

2(Vthre)
2 exp(−2ti/γ )

Nγ (1 − exp(−2ti/γ ))
. (10)

We arrive at the final conclusion

λ̂N =
N∑

i=1

(Vthre)
2 exp(−2ti/γ )

Na2γ (1 − exp(−2ti/γ ))
+

Vthre

2aγ

=
∑N

i=1 fa(ti)

N
+

Vthre

2aγ
(11)

where fa(t) = f2(t)/a
2 (see figure 2). Hence, we have

Theorem 1. For the IF model with exactly balanced inputs, the maximum likelihood estimate
of the input rate is given by equation (11).
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We call fa(t) the MLE function. It is interesting to note that the MLE function is a
decreasing function. When t is small, its value is larger. In other words, the small t will play a
much important role in the maximum likelihood estimate. Via fa , different interspike interval
lengths are weighted very differently. The functional meaning of the MLE function is clear. It
helps the nervous systems improve the speed of decoding: ignoring long interspike intervals
without affecting too much the decoding accuracy.

4. Fisher information and decoding of static inputs

In statistics, the Fisher information is of fundamental importance. Via the Cramer–Rao
inequality, it sets the lowest bound for an unbiased estimate. Furthermore, it gives the
confidence interval of the MLE when the sampling size is larger enough (asymptotically).

According to the definition of the Fisher information I (λ), we have

I (λ) =
∫ (

p′
λ(t)

pλ(t)

)2

pλ(t) dt. (12)

A simple calculation tells us that

p′
λ(t) =

(
− a2

σ 2
+

2a2f2(t)

σ 3

)
pλ(t).

Hence,

I (λ) = 4a4
〈
f 2

2

〉
σ 6

− 4a4〈f2〉
σ 5

+
a4

σ 4

= 4a6
〈
f 2

a

〉
σ 6

− 4a5〈fa〉
σ 5

+
a4

σ 4

which in turn yields the following conclusion.
For an estimate λ̂N of a parameter λ, let us assume that

√
N(λ − λ̂N ) → Nor(0, σ 2) in

distribution where Nor(·, ·) is the normal distribution. We call (λ − σ/
√

N, λ + σ/
√

N) the
(σ−) confidence interval of the estimate λ̂N .

Theorem 2. For a given N, the confidence interval of the maximum likelihood estimate of the
input λ is given by[

λ − 1√
NI (λ)

, λ +
1√

NI (λ)

]
. (13)

Proof. It is easy to check that all conditions in theorem 3.10 on p 449 of [10] are true and so
we have √

N(λ̂N − λ) → Nor(0, 1/I (λ))

in distribution where Nor(·, ·) is the normal distribution with corresponding mean and variance.
Hence, the conclusions in theorem 2 follow. �

In figure 3, the coefficient of variation (CV) of the interspike intervals (ISIs) and Fisher
information with respect to λ are plotted. The property of the obtained Fisher information and
CV is interesting. We note that the higher the input rate, the more variable the output spikes
(the larger the CV or the smaller the Fisher information). As we all know (see theorem 2), the
lower the Fisher information, the less accurate the estimate of the input rate.

Another interesting question we might ask is why we intend to develop the MLE. There
are many possible ways to estimate (decode) the input firing rate. The simplest way is to
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Figure 3. Left: CV (dotted and dashed lines) and Fisher information (solid and dot-dashed lines)
versus input frequency. Right: output frequency versus input frequency. A refractory period of
5 ms is added to calculate the output frequency. a = 1 mV (solid lines) and a = 0.5 mV (dotted
lines).
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Figure 4. Left: MLE versus input frequency (kHz) with N = 100. Solid lines are confidence
intervals. Right: theoretical efferent firing rate (solid line) and simulated efferent firing rate (∗)
versus afferent inputs.

determine the input rates via moments of ISIs and the approach has been extensively discussed
in the literature. The term ‘rate coding’ is usually used to refer the approach. In figure 4(right),
we also plot theoretical efferent firing rates versus afferent firing rates and simulated efferent
firing rates versus afferent firing rates. In terms of figure 4(right), we (the nervous system) can
read out the input rate. However, a direct comparison of figure 4(left) with figure 4(right) tells
us that the MLE achieves a much better accuracy. For example, when the input rate is 10 kHz,
the confidence interval for the MLE is around 0.5 kHz. Nevertheless, for the ‘rate coding’ we
see that the estimated input rate is 7 kHz (see dotted lines in figure 4), a much worse estimate.
In fact from the general theory of statistics, we know that the MLE asymptotically attains the
optimal bound determined by the Fisher information (see equation (11)). Hence, it is not too
surprising to see that the MLE gives a better estimate.

5. Decoding of dynamical inputs

Now we turn our attention to decode dynamic input signals. The network is depicted in
figure 5(left). There are 100 neurons, each of them receives an exactly balanced input with
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Figure 5. Left: a schematic plot of the network. Right: MLE (dotted lines) and input frequency
(solid lines) (kHz) versus time. The time window used is 100 ms.

σ(t) as described before. We assume that all inputs are independent (see section 7) and collect
spikes in a fixed length of time window Tw. For example, if Tw = 100 ms, then we record
100 neurons with a 100 ms time window to decode the input information (figure 5(right)).

Surprisingly, data obtained from the MLE are always higher than inputs (figure 5(right)),
in contrast with figure 4 where both higher and lower estimates than the actual data are
obtained. It is then natural to ask what is going wrong here.

The problem lies in the assumption of ergodicity in Neuroscience which states that
averaging over a long time window of a single neuron recording is equivalent to average over
an ensemble of neurons, i.e. averaging over a larger number of identical neurons within a short
time window. However, figure 5 clearly demonstrates that this assumption is problematic. Let
us first understand why it happens. Consider the ith neuron in the group. We assume that
within the time window of 100 ms, it fires no spikes. Hence, in the ensemble average, we will
not count the neuron. However, in temporal average, it counts as a long interspike interval.
As discussed before, a long interspike interval contributes to almost nothing to the numerator
in the MLE, but increases the denominator. Hence, the temporal average in general gives a
lower value than the ensemble average of a fixed time window.

Now let us formulate the problem mathematically. Define

Ni = #

{
j,

j∑
k=1

ti,k � Tw, j = 1, 2, . . .

}
i = 1, . . . ,N

where Tw is the time window to collect spikes for each neuron, ti,k is the kth interspike interval
collected from the ith neuron and N is the total number of neurones recorded with a time
window [0, Tw]. N = ∑N

i=1 Ni is the total number of spikes. Let us define

λ̂e,N

∑N
i=1

∑∞
j=1 fa(ti,j )I{∑j

k=1 ti,k�Tw}
N

(14)

where IA(x) is the indicator function, i.e. IA(x) = 1 if x ∈ A and 0 otherwise. From
equation (3.6), it is easily seen that λ̂e,N , omitting the constant Vthre/2aγ , is actually a
truncated estimate of λ̂N .
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Figure 6. Upper panel: left, relationship between λe and λ; right, λ (solid lines) and MLE (dotted
lines) versus time after readjustment according the relationship between λe and λ. Bottom panel:
left, MLE and confidence intervals with thick lines indicating confidence intervals, ‘◦’ being true
values and dotted lines MLE; right, average number of spikes per neuron within 100 ms window.
Figures are generated using different realizations.

With a given random variable ti,k and under the assumption of the existence of the limit
limN λ̂e,N = λe, we can calculate the relationship between λe and λ explicitly (censored data
in statistics). Hence,

λ = h(λe, Tw)

for a function h. Therefore, from biased ensemble average λe, we can recover the true value λ.
Nevertheless, in the current paper, we do not intend to carry out a detailed calculation of the
function h which is quite mathematically involved. In figure 6(left) (upper panel), we plot the
relationship between λe and λ, i.e. h−1, with Tw = 100 ms. The dashed line is obtained via
data fitting. As claimed before, the ensemble average within a fixed time window is a biased
estimate of λ, i.e. λe > λ. In figure 6, the relationship between λe and λ is

λe = −0.00036λ2 + 1.2λ − 0.069.

Comparing figure 5 with figure 6 (upper panel), we see that a dramatic improvement of
the MLE is obtained. In figure 5, in fact the range of inputs is smaller than the range of inputs
in figure 6 (upper panel).

In conclusion, we have developed an algorithm which can reliably read out the input
information based upon an ensemble average. To gain further information on the MLE
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Figure 7. Upper panel: left, relationship between λe and λ; right, λ (solid lines) and MLE (dotted
lines) versus time after readjustment according the relationship between λe and λ. Bottom panel:
left, MLE and confidence intervals with thick lines indicating confidence intervals, ‘◦’ being true
values and dotted lines MLE; right, average number of spikes per neuron within 50 ms window.
All figures are generated using different realizations.

approach, in figure 6 bottom panel (left), the confidence intervals according to theorem 2 are
plotted. In figure 6 bottom panel (right), it is interesting to see that actually we have only used
no more than three spikes in the MLE. In the extreme case, when neuronal input is around
2000 Hz, we need 1.3 spikes per neuron to decode the input.

The next and critical question is how the MLE depends on the length of the recording
window Tw.

In figure 7, numerical results with Tw = 50 are depicted. It is illuminating to see
when Tw = 50 ms, the decoding of dynamical signals is still quite good. Most surprisingly,
figure 7 middle panel (right) shows that in general less than one spike per neuron is used in
the MLE. Remembering that one of the main arguments to again rate coding is the speed of
information processing, it requires hundreds of spikes to reliably decode the input information.
In time coding, a single spike is enough to decode the input information. However, our results
in figure 7 middle panel (right) clearly indicate that in population (rate) coding less than a
single spike per neuron is sufficient to decode the input information.

To further confirm our conclusion, less than a spike is needed to decode the input
information. In figure 8, we use Tw = 29 ms. It is clearly shown that at most 0.7 spike
is needed to accurately decode the input information (see middle panel, right). Therefore, rate
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Figure 8. Upper panel: left, relationship between λe and λ; right, λ (solid lines) and MLE (dotted
lines) versus time after readjustment according the relationship between λe and λ. Middle panel:
left, MLE and confidence intervals with thick lines indicating confidence intervals, ‘◦’ being true
values and dotted lines MLE; right, average number of spikes per neuron within 29 ms window.
All figures are generated using different realizations. Bottom panel: left, MLE versus input rate;
right, average number of spikes per neuron with 20 ms window.

coding could be even faster than time coding. In figure 8 (bottom panel), we further reduce
Tw to 20 ms. However, in such a short time window, the whole population of neurons might
be totally silent (no spike at all) and a decoding of the input information is surely impossible.
It is interesting to compare figures 6 and 7 with figure 8. In figure 6, more than one spike is
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Figure 9. A schematic plot of reading spike distribution within a short time window. The time
window on the left side of thick lines (dashed and solid) will be enough for the nervous system to
read out the input information.

used to decode. As a result, the decoding accuracy is better than that of figure 7 (intermediate
case) and figure 8 (less than a spike is employed to decode).

We can easily understand why this is the case. Assume that two received signals (spike
trains) are distributed as depicted in figure 9. If we have a short time window but with a large
number of samples, the samples would be enough for us to predict the actual distribution.

6. Bayesian estimate

It is known that Jeffreys prior [10] is defined by

pJ(λ) ∝ I 1/2(λ).

It is not difficult to check that the Jeffreys prior is proper, i.e.
∫
pJ(λ) dλ < ∞. Hence, the

posterior distribution is

pP(λ) ∝ p(x|λ)pJ(λ).

To find λ which maximizes the posterior distribution is equivalent to finding the solution of
the following equation:

2Np′
Jσ

4 − 2σ 2a2pJ + 4a2pJ

N∑
i=1

f2(ti) = 0

or

a2σ 2 − (log pJ)
′σ 4 = 2a2 ∑N

i=1 f2(ti)

N
.

The optimal Bayesian estimate λB is simply the solution of the following equation:

σ 2(λB) − I ′(λB)

2I (λB)

(
2aλB − Vthre

γ

)2

= 2
∑N

i=1 f2(ti)

N
. (15)

The implications of equation (7) are clear. The second term, − I ′(λB)

2I (λB)

(
2aλB − Vthre

γ

)2
, on the

left-hand side of equation (7) is always positive. Hence, the Bayesian estimate tends to be
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Figure 10. B(λ) and σ 2(λ) versus λ. When the input is higher, B(λ) and σ 2(λ) converge, i.e. the
Bayesian estimate and the MLE are identical.

smaller than the maximum likelihood estimate. From figure 10 we can see that the larger
the estimate, the larger the error. The Bayesian estimate makes sure that the risk of making
mistake is smaller. From equation we see that

I ′(λ) = −12a6
〈
f 2

2

〉
σ 8

+
10a6〈f2(t)〉

σ 7
− 2a6

σ 6
. (16)

Combining equation (7) with equation (16) we conclude that λB is the solution of the following
equation:

B(λ) = σ 2(λ) −
[
−6a6

〈
f 2

2

〉
σ 8

+
5a6〈f2(t)〉

σ 7
− a6

σ 6

] (
2aλ − Vthre

γ

)2

= 2
∑N

i=1 f2(ti)

N
. (17)

As we pointed out before, the Bayesian estimate is lower than the MLE estimate
(figure 10). When the input rate is low, the difference between the MLE and the Bayesian
estimate is large. They gradually converge when the input rate is high.

7. Discussions

We have presented an approach to decode the input information based upon the output from a
spiking neuron network and the maximum likelihood estimate.

The results reported in the current paper could be valuable both for neuroscience and for
engineering applications of spiking neuron networks. For neuroscience, as mentioned above,
we provide the first template in the literature on how to reliably read out the information in
spiking neuron networks; we have clarified a few key issues in neuroscience. For engineering
applications, although the expectation of the application of spiking neuron networks to solving
practical problems is high, how to decode the actual input information in a stochastic spiking
neuron network is not known. To the best of our knowledge, our approach is the first one to
really address and solve the issue, although the idea is around for many years [7]. The basic
difficulty lies in the fact that we do not have an analytical formula for the interspike interval
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Figure 11. Distribution of orientation patches in V1 revealed by optical imaging. Orientation
patches with identical orientation are separated in V1.

distribution and so we are not able to have a rigorous maximum likelihood estimate [2]. As a
consequence, it is not possible to test, for example, how large a window is needed to decode
the input information. Our approach is in the framework of population coding which has been
extensively studied in the literature, see for example [3, 20, 18]. However, our approach is
totally different from their. In their work, the starting point is the firing rate of neurons. It
would be interesting to combine the two approaches. In [6], the author carried out a study
on the dynamics of the first-order statistics: the mean firing rate, of a population of neurons,
i.e. a rate coding approach as discussed in figure 4. We note that the decoding of the input
information as we rigorously developed here is not simply a rate coding approach. From
equation (3.6) we see that the MLE is a nonlinear function of interspike intervals ti .

There are two essential issues we have not addressed here. The first one is the interaction
among neurons. We have assumed that no interactions exist among the neurons. This is
obviously a oversimplification. How can we introduce interactions in the network and at the
same time ensure the exactly balanced assumption? For each excitatory input arising from
the neighbourhood neurons, we can introduce a delayed inhibitory input. Hence, each neuron
in the networks receives an exactly balanced input and our approach applies. Upon further
reflection this might not be an unrealistic assumption in some circumstances. For example,
in figure 11, we intend to read out the orientation of the input, say a light bar. We can treat
neurons from one orientation patch as a single unit. Note that orientation patches with the
identical orientation are separated and so we could safely assume that the interaction between
them is weak. Hence, our approach can be directly applied.
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The second issue is the correlated input between neurons [21, 12]. We would easily expect
that nearby neuron activity is correlated, although various mechanisms have been introduced
to break down the input correlation [1, 8]. Whether a correlation will increase or decrease the
decoding accuracy is not known. We will explore the issue in further publications.

Finally, we want to emphasize that although we have concentrated on estimating a single
parameter within each time window, we have actually treated the model as a probability model.
The input distribution of interspike intervals is uniquely determined by the single parameter.
What we actually achieved is to read out input probability flows, based upon observed multiple
spike trains. In the near future, we will carry out ‘experiments’ on spiking neuronal networks
and test some ideas as described in [1].
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